Summarises useful thermal output and auxiliary energy for each monitoring period while applying the AMS-I.J calculation helpers.

aggregate_monitoring_periods(
  thermal_data,
  monitoring_cols = c("year", "month"),
  group_cols = "site_id",
  useful_energy_col = "useful_heat_mwh",
  auxiliary_energy_col = "auxiliary_energy_mwh",
  baseline_factor_col = "baseline_emission_factor",
  auxiliary_factor_col = "auxiliary_emission_factor"
)

Arguments

thermal_data

Tibble containing monitoring observations.

monitoring_cols

Columns defining the monitoring period.

group_cols

Entity-level identifier columns.

useful_energy_col

Column with useful thermal output in MWhth.

auxiliary_energy_col

Column with auxiliary energy in MWhth, or NULL.

baseline_factor_col

Column storing the baseline emission factor.

auxiliary_factor_col

Column storing the auxiliary emission factor.

Value

Tibble aggregated by entity and monitoring period with emissions and emission reductions.

Examples

data <- simulate_ams_ij_dataset(n_sites = 2, n_periods = 3)
aggregate_monitoring_periods(
  data,
  monitoring_cols = c("year", "month"),
  group_cols = "site_id"
)
#> # A tibble: 6 × 9
#>   site_id  year month baseline_emissions_tco2e project_emissions_tco2e
#>   <chr>   <dbl> <dbl>                    <dbl>                   <dbl>
#> 1 site_1   2023     1                     22.5                    4.58
#> 2 site_1   2023     2                     31.6                    4.48
#> 3 site_1   2023     3                     19.9                    1.74
#> 4 site_2   2023     1                     23.1                    3.45
#> 5 site_2   2023     2                     20.4                    2.57
#> 6 site_2   2023     3                     15.7                    2.25
#> # ℹ 4 more variables: emission_reductions_tco2e <dbl>,
#> #   useful_thermal_output_mwh <dbl>, baseline_emission_factor <dbl>,
#> #   auxiliary_emission_factor <dbl>