Generate example baseline, project, and leakage datasets for commercial buildings so the AMS-II.Q workflow can be exercised end-to-end.

simulate_ams_iiq_inputs(n_buildings = 4, seed = NULL)

Arguments

n_buildings

Number of commercial buildings to simulate.

seed

Optional integer used to seed the random number generator.

Value

A list with baseline_data, project_data, and leakage_data tibbles.

Examples

simulate_ams_iiq_inputs(n_buildings = 2, seed = 42)
#> $baseline_data
#> # A tibble: 2 × 4
#>   building_id baseline_energy_use_mwh baseline_emission_factor_tco2_per_mwh
#>   <chr>                         <dbl>                                 <dbl>
#> 1 B1                             942.                                 0.639
#> 2 B2                            1034.                                 0.591
#> # ℹ 1 more variable: baseline_service_output_mwh <dbl>
#> 
#> $project_data
#> # A tibble: 2 × 6
#>   building_id project_energy_use_mwh project_emission_factor_tco2_per_mwh
#>   <chr>                        <dbl>                                <dbl>
#> 1 B1                            620.                                0.595
#> 2 B2                            655.                                0.540
#> # ℹ 3 more variables: project_service_output_mwh <dbl>,
#> #   project_onsite_energy_gj <dbl>,
#> #   project_onsite_emission_factor_tco2_per_gj <dbl>
#> 
#> $leakage_data
#> # A tibble: 2 × 2
#>   building_id leakage_emissions_tco2e
#>   <chr>                         <dbl>
#> 1 B1                            0.168
#> 2 B2                            0.126
#>