simulate_ams_iie_dataset.RdGenerates tidy monitoring data for building portfolios implementing energy efficiency and fuel switching measures under AMS-II.E.
simulate_ams_iie_dataset(
n_buildings = 6,
n_periods = 12,
start_year = 2023,
start_month = 1,
baseline_electricity_mean = 140,
baseline_thermal_mean = 380,
electricity_savings = 0.25,
thermal_savings = 0.35,
fuel_switch_reduction = 0.3
)Number of buildings to simulate.
Number of monitoring periods per building (default monthly).
Calendar year for the first monitoring period.
Calendar month (1-12) for the first monitoring period.
Mean baseline electricity consumption per period (MWh).
Mean baseline thermal energy demand per period (GJ).
Expected fractional reduction in electricity demand under the project (0-1).
Expected fractional reduction in thermal demand under the project (0-1).
Expected fractional reduction in thermal emission factors due to fuel switching (0-1).
A tibble containing building IDs, monitoring metadata, baseline and project energy parameters, service indicators, and leakage placeholders.
simulate_ams_iie_dataset(n_buildings = 3)
#> # A tibble: 36 × 20
#> building_id monitoring_period year month day monitoring_date
#> <chr> <int> <dbl> <dbl> <int> <date>
#> 1 building_01 1 2023 1 13 2023-01-13
#> 2 building_01 2 2023 2 23 2023-02-23
#> 3 building_01 3 2023 3 12 2023-03-12
#> 4 building_01 4 2023 4 5 2023-04-05
#> 5 building_01 5 2023 5 6 2023-05-06
#> 6 building_01 6 2023 6 15 2023-06-15
#> 7 building_01 7 2023 7 15 2023-07-15
#> 8 building_01 8 2023 8 4 2023-08-04
#> 9 building_01 9 2023 9 6 2023-09-06
#> 10 building_01 10 2023 10 9 2023-10-09
#> # ℹ 26 more rows
#> # ℹ 14 more variables: monitoring_label <chr>, baseline_electricity_mwh <dbl>,
#> # baseline_thermal_energy_gj <dbl>,
#> # baseline_electricity_emission_factor_tco2_per_mwh <dbl>,
#> # baseline_thermal_emission_factor_tco2_per_gj <dbl>,
#> # baseline_total_energy_mwh <dbl>, project_electricity_mwh <dbl>,
#> # project_thermal_energy_gj <dbl>, …