Combines individual applicability checks into a tidy diagnostics tibble.

assess_ams_iie_applicability(
  baseline_data,
  project_data,
  monitoring_data,
  evaluate_fuel_switch = TRUE
)

Arguments

baseline_data

Baseline dataset used for applicability checks.

project_data

Project dataset used for applicability checks.

monitoring_data

Monitoring dataset used for completeness checks.

evaluate_fuel_switch

Logical indicating whether to evaluate the fuel switching criterion.

Value

A tibble summarising AMS-II.E applicability results.

Examples

baseline <- tibble::tibble(
  baseline_total_energy_mwh = c(220, 195),
  baseline_thermal_energy_gj = c(320, 180),
  baseline_thermal_emission_factor_tco2_per_gj = c(0.07, 0.072),
  service_level_indicator = c(4.2, 3.9)
)
project <- tibble::tibble(
  project_total_energy_mwh = c(150, 138),
  project_thermal_energy_gj = c(280, 120),
  project_thermal_emission_factor_tco2_per_gj = c(0.045, 0.05),
  service_level_indicator = c(4.2, 3.9)
)
monitoring <- tibble::tibble(
  building_id = c("Office_A", "Office_B"),
  project_total_energy_mwh = c(12.5, 11.2),
  service_level_indicator = c(0.35, 0.32),
  operating_hours = c(220, 215)
)
assess_ams_iie_applicability(baseline, project, monitoring)
#> # A tibble: 1 × 4
#>   energy_efficiency fuel_switching monitoring_ready overall_applicable
#>   <lgl>             <lgl>          <lgl>            <lgl>             
#> 1 TRUE              TRUE           TRUE             TRUE