Combines the individual applicability checks into a single tidy tibble of diagnostics.

assess_ams_iid_applicability(
  baseline_data,
  project_data,
  monitoring_data,
  fuel_switch = TRUE
)

Arguments

baseline_data

Baseline dataset used for applicability checks.

project_data

Project dataset used for applicability checks.

monitoring_data

Monitoring dataset used for completeness checks.

fuel_switch

Logical indicating whether the project includes a fuel switching component. If FALSE, the fuel switching test is skipped.

Value

A tibble with one row summarising applicability outcomes.

Examples

baseline <- tibble::tibble(
  baseline_fuel_quantity = c(1200, 900),
  baseline_efficiency = c(0.72, 0.68),
  baseline_emission_factor_tco2_per_gj = c(0.094, 0.094)
)
project <- tibble::tibble(
  project_fuel_quantity = c(950, 710),
  project_efficiency = c(0.84, 0.8),
  project_emission_factor_tco2_per_gj = c(0.082, 0.082)
)
monitoring <- tibble::tibble(
  unit = c("Kiln", "Dryer"),
  project_fuel_quantity = c(80, 70),
  project_efficiency = c(0.84, 0.8),
  useful_heat_output = c(60, 55)
)
assess_ams_iid_applicability(baseline, project, monitoring)
#> # A tibble: 1 × 4
#>   energy_efficiency fuel_switching monitoring_ready overall_applicable
#>   <lgl>             <lgl>          <lgl>            <lgl>             
#> 1 TRUE              TRUE           TRUE             TRUE