Generate synthetic datasets compatible with the AMS-III.E helpers for demos, examples, and tests.

simulate_ams_iiie_dataset(n_plants = 3, n_periods = 4, seed = NULL)

Arguments

n_plants

Number of facilities to simulate.

n_periods

Number of monitoring periods per facility.

seed

Optional seed for reproducibility.

Value

List containing tibbles baseline, project, leakage, and applicability.

Examples

simulate_ams_iiie_dataset(n_plants = 2, n_periods = 3, seed = 123)
#> $baseline
#> # A tibble: 6 × 6
#>   plant_id period biomass_tonnes methane_potential_m3_p…¹ anaerobic_decay_frac…²
#>   <chr>     <int>          <dbl>                    <dbl>                  <dbl>
#> 1 PL1           1          1001.                     116.                  0.582
#> 2 PL1           2          1352.                     116.                  0.739
#> 3 PL1           3          1086.                     132.                  0.722
#> 4 PL2           1          1418.                     120.                  0.673
#> 5 PL2           2          1458.                     102.                  0.660
#> 6 PL2           3           832.                     108.                  0.749
#> # ℹ abbreviated names: ¹​methane_potential_m3_per_tonne,
#> #   ²​anaerobic_decay_fraction
#> # ℹ 1 more variable: days_in_period <dbl>
#> 
#> $project
#> # A tibble: 6 × 8
#>   plant_id period treated_biomass_tonnes methane_potential_m3_per_tonne
#>   <chr>     <int>                  <dbl>                          <dbl>
#> 1 PL1           1                   936.                           116.
#> 2 PL1           2                  1274.                           116.
#> 3 PL1           3                  1000.                           132.
#> 4 PL2           1                  1315.                           120.
#> 5 PL2           2                  1294.                           102.
#> 6 PL2           3                   723.                           108.
#> # ℹ 4 more variables: methane_slip_fraction <dbl>,
#> #   auxiliary_fuel_consumption_tj <dbl>, auxiliary_fuel_ef_tco2_per_tj <dbl>,
#> #   days_in_period <dbl>
#> 
#> $leakage
#> # A tibble: 6 × 7
#>   plant_id period biomass_transported_tonnes transport_distance_km
#>   <chr>     <int>                      <dbl>                 <dbl>
#> 1 PL1           1                       978.                  38.0
#> 2 PL1           2                      1400.                  20.3
#> 3 PL1           3                      1037.                  16.4
#> 4 PL2           1                      1410.                  47.7
#> 5 PL2           2                      1502.                  54.8
#> 6 PL2           3                       800.                  28.7
#> # ℹ 3 more variables: transport_ef_tco2_per_tkm <dbl>,
#> #   alternative_use_fraction <dbl>, alternative_use_ef_tco2_per_tonne <dbl>
#> 
#> $applicability
#> # A tibble: 2 × 8
#>   plant_id feedstock_type  moisture_fraction anaerobic_baseline
#>   <chr>    <chr>                       <dbl> <lgl>             
#> 1 PL1      forest residues             0.454 TRUE              
#> 2 PL2      forest residues             0.547 TRUE              
#> # ℹ 4 more variables: biomass_control_plan <lgl>,
#> #   energy_measurements_per_month <int>, operating_hours_per_period <dbl>,
#> #   feedstock_samples_per_month <int>
#>